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APPENDIX D 
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Abstract 
This appendix gives an overview and a description of the Modelica models developed in the 
OpSys project (supplemented with screenshots from Dymola). The models are based on the 

house model presented in Appendix C and consists of different reusable subcomponents 
organized in Modelica packages. Modelica enables export of functional mockup units (FMU’s) 

for simulation in other environments such as Python, which is utilized in the OpSys testrig setup.  
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D.1 Overall Simulation Model Structure 
The models are split into two main Modelica packages “OpSys_Modelon” and “OpSys_Experiments (see 

Package Browser view in Figure D.1).  

The package OpSys_Modelon consist of prebuild example models of different house types: 

 BR10_house 

 BR1970_house 

 BR1970_house_mod (the floor heating in room 1 and 2 is split up into 4 and 3 circuits 

respectively in this model). 

These models are based on room models, which are interconnected with component models of Ceiling, 

LayeredWall, LayeredWall_Window, and Door. The Room and component models are further described 

in Section D.2. A house model is given an interchangeable record with parameters for a given house type 

(House_1970, House_BR10, House_2015), which means that a model with a BR15 house specification 

can easily be built from existing examples. The parameter values for each house type is presented in 

Appendix C.   

The package OpSys_Experiments contain full simulation models loaded with input data for an entire 

year, see Section D.3. One of these models is BR1970_house_simulation_with_data, which is prepared 

for use together with the Testrig. A top layer view of this simulation model is also shown in Figure D.2. 

The boundary inputs to the model (inputs from the Testrig) are forward temperature and floor heating 

water mass flows in each of the four floor zones. Note that zone 1 has two flow inputs, which are added 

together, because the Testrig has two valves and two flow measurements for this zone. Additionally, 

each flow input is filtered with a second order Modelica Standard Library (MSL) filter to ensure faster 

and more robust simulation (gives smooth continuous input signal and derivatives). The filter cutoff 

frequency can be chosen fast compared to the dynamics of the flow inputs. 

MSL combiTimeTables are used to load a txt data file with ambient temperature, solar heat input into 

each window, and heat input from people and appliances. The air ventilation rate for each room is fixed 

in the simulations and set as described in Appendix C. No measures for preventing overheating during 
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the summer have been included in the present work as the focus is on the heat and power demand 

during the heating season.     

D.2 Sub-component Model Description 
Figure D.3 provides an overview of the room model. The central heat capacity represents the air volume 

and associated room temperature. The heat capacity is connected with the surroundings through 

Modelica heat ports. Q_delta is the heat input from ventilation calculated based on the inputs 

Ventilation_Flow and T_ambient. The InternalHeatFlowPort input is the heat input from people and 

appliances and the InternalHeatFlowPort2 input is the heat input from the sun to the air and floor 

(divided by a gain set to 0.5 – half of the sun heat input goes directly to the air and the other half flows 

into the floor).     

Each room model also consists of a floor heating model with a heat connection to the room air heat 

capacity. The content of the floor model is shown in Figure D.4. In the project, it was decided to 

discretize the floor along the floor heating pipe length in 10 zones with vertical heat conduction up 

through the floor (no heat conduction horizontally along the discretization). Additionally, each zone has 

four heat resistances; water to floor capacity, water to ground temperature, floor to upper floor, and 

upper floor to air. This gives the resistive-capacitive network shown in Figure D.4. The dynamic floor 

heating pipe model (blue cylinder) is from MSL and with Fluid.Pipes.BaseClasses.FlowModels.Turbulent-

PipeFlow as flow model (Quadratic turbulent flow in circular tubes and roughness 0.7e-5 m similar to 

floor heating PEX tubes). The diameter of the pipe is set to 0.012 m for the pipes in room 1, 2, and 4 

(wood flooring) and 0.02 m for the pipe in Room 3 (concrete flooring). 

Figure D.5 shows the LayeredWall_Window model consisting of a wall and a window heat capacity. 

These capacities are connected to the surroundings through thermal resistances and heat ports. The 

input sun_to_wall provides the possibility of adding heat directly from the sun into the wall capacity (not 

used in the simulation models in this project). The LayeredWall and Ceiling models are similar just 

without windows.  

The Door model provides the possibility to add heat transfer between rooms caused by ventilation of air 

through door openings. The input to the model is the ventilation rate and the room temperature on 

each side of the door. The output heat transfer rate can be added to the internal heat gain of each room 

(note that one of the rooms should have heat transfer added with opposite sign). 

 



4 
 

 

Figure D.1: Package browser overviews of the OpSys_Modelon package and parts of the OpSys_Experiments package with 
highlighting of the main simulation file for the Testrig (under Test_setup_models). 
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Figure D.2: Top layer view of house simulation model used for the Testrig (model “BR1970_house_simulation_with_data”).   

 

Figure D.3: Room model with a central heat capacity and connections to walls, ceiling, floor, and internal heat gains.  
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Figure D.4: Floor model consisting of an MSL dynamic pipe model with interchangeable fluid media model (blue cylinder) and a 

resistive-capacitive network representing a discretized floor. 

 

 

Figure D.5: LayeredWall_Window model consisting of a resistive-capacitive network.  

D.3 Load Data File Description 
Three txt files with tabulated data are generated with hourly load values for a reference year (see 

description of data in Appendix C):  

 all_data_1970.txt 

 all_data_BR10.txt 

 all_data_BR15.txt 

Three additional files are generated, where normally distributed noise is added to each value in the 

schedules for internal heat gains from people and appliances, since they are expected to exhibit a 

stochastic behavior:  
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 all_data_1970_noisy.txt 

 all_data_BR10_noisy.txt 

 all_data_BR15_noisy.txt 

A standard deviation of 10% of the value is chosen for the normally distributed noise and it is added to 

provide data, which is not entirely predictable just by looking at previous days. More elaborate 

randomness/noise studies could be conducted by changing the content of the above-mentioned files. A 

parameter in the simulation model determines which file is in use (should correspond to the house type 

used in the simulation).  

Example of a part of the txt data file content (first column is time in seconds and second column is 

value): 

double equipment_living_room(8761,2) 

0,152.2166; 

3600,170.94047; 

7200,111.82096; 

10800,156.90409; 

… 

double people_living_room(8761,2) 

0,0; 

3600,0; 

7200,0; 

10800,0; 

14400,0; 

18000,0; 

21600,146.05664; 

… 

Note that weather data and brine temperature are also included in the load data files.  

D.4 Simulation Without Hardware 
Models similar to the entire test rig setup are also provided in the OpSys_Experiments package for 

simulation without hardware in the loop (see package overview in Figure D.6). This provides the 

possibility of running long simulations faster than real time and makes it possible to test control 

algorithms before implementation on the Testrig.  

The subfolder Simulation_models consist of various prebuilt models: 

 BR1970_house_without_hp – This model consists of a house using a 1970’s house 

parameter record, models for the manual adjustment valves (fixed opening degree for 

balancing of pressure drops in floor heating pipes), valve models with on/off hysteresis type 

control for room temperature control (controllable thermal wax valves), and a circulation 

pump model with variable rotational speed for control of the temperature drop across the 

floor heating pipes (e.g., more flow gives lower temperature drop). The heating source is not 

included and the forward temperature is therefore set directly.  
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Figure D.6: Overview of the OpSys_Experiments package with models for Testrig experiments, models for simulation without 

hardware, different controllers, and specific components for simulation without hardware (e.g., heat pump and heat curves). 

 BR1970_house_with_hp – This model is similar to the previous model with the addition of a 

simple static heat pump model that provides heat input to a dynamic MSL pipe model. The 

circulation pump control is replaced by a fixed speed setting and the heat pump is instead 

supplemented with PI control of the forward temperature. The forward temperature 

setpoint is generated by a heating curve function based on the current outdoor ambient 

temperature.  
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 BR1970_house_with_hp_more_valves – This model is again similar to the previous model, 

but with a split of the floor heating circuits to room 1 and 2. Room 1 and 2 has four and 

three identical individual floor heating loops, respectively. The length of each loop is 90 m in 

Room 1 and 80 m in Room 2. This ensures that the length of each individual loop does not 

exceed 100 m. Additionally night setback is added to the room temperature control 

between the hours 22.00 – 5.00 (from 22°C to 19°C). 

 BR1970_house_with_hp_more_valves_ga_opt –  This model does not have room 

temperature control, but is prepared for implementation of more advanced control of the 

floor heating valves in, e.g, Python. This means that the valve opening degrees are inputs to 

the model along with the possibility of offsetting the ambient temperature measurement 

used in the heat pump heat curve. The model is specifically used in OpSys in connection with 

design of neural networks and genetic algorithm optimization. A screenshot of the model in 

Dymola is shown in Figure D.7.  

D.4.1 Floor Heating System Model Overview 
A floor heating system is shown in Figure D.7, with the center square box representing the house model 

with four rooms.  

 

Figure D.7: Overview of the simulation model BR1970_house_with_hp_more_valves_ga_opt. d_1, d_2, d_3, d_4, and 

T_amb_offset are the five external inputs to the simulation (e.g., determined in Python and set as input to the FMU of the 

simulation model).    

Load data is provided through combiTimeTables in the same manner as when running simulations on 

the Testrig. The blue connections/lines represent the incompresible fluid flow in the network. Starting 

from the left, the fluid goes through the dynamic pipe model hp_pipe, where heat is applied from the 

heat pump model through the prescripbed heat flow interface (red component). The additional pipe 

hp_pipe2 represent a volume, which can be seen as the volume in pipings and the heat exhanger. The 

volume of the two pipe sections are in OpSys FMU’s set to 5 liters each. A bypass valve and a heat pump 

circulation pump ensures a constant circulation of water even with all floor heating valves closed. The 

pump is set to a fixed speed, but this can be upgraded with more advanced control if needed. Another 
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circulation pump is used to supply the floor heating loops (also fixed speed) and an expansion volume is 

placed before this pump with a volume of 32 liters in OpSys FMU’s. The water flow is then distributed 

among the nine manual adjustment valves shown in the top part of Figure D.7. The specific distribution 

is determined by the on/off state of the bottom nine control valves and the particular setting on the 

manual adjustment valves (set to provide similar flows as in the Testrig setup). The dynamic tee 

junctions on each side of the floor heating valves, which splits and collects all the flows, are set to have a 

volume of 0.2 liters.  

D.4.2 Sub-component Model Choices and Default Parameters 
 Dynamic valve and pipe models are from the MSL and the nine control valves have input filters 

on the opening degree, with a rise time of 300 seconds, to emulate the slow dynamics of the 

thermal wax valves. 

 The heat pump model is based on results from the IPower project (see Jensen, S.Ø., 

Christiansen, C.H., Jørgensen, D.M. and Huet, J., 2016. Smart Meter Case Study. Danish 

Technological Institute) and provides a simple static function that calculates the heat pump heat 

input to the floor heating system Q_hp from the current brine temperature, the forward 

temperature, and the input power: 

  deltaT = T_forward - T_brine; 
  COP_carnot = T_forward/deltaT; 
  eta = -0.02623*Power/1000 + 0.0010993*deltaT + 0.4016; 
  COP_hp = eta*COP_carnot; 
  Q_hp = Power*COP_hp; 

 

The input power is limited to between 500 and 2500 W for reasonable dimensioning of the heat 

pump to the particular house and floor heating system (can be changed by setting the 

parameters PI_comp.ymin and PI_comp.ymax). Below 500 W the heat pump is on/off 

controlled, while between 500 and 2500 W the power to the heat pump is continuously 

controlled in order to fit the needed heat input to the house 

 The starting time of the simulation in seconds from 1st of January (time_offset) and the current 

simulation time (time_sim) is used to determine the brine temperature used in the heat pump 

calculations (see Appendix C); 

     day = (time_sim - time_offset)/(24*60*60); 
     Temp_brine = 0.8358 - 8.854e-3*day - 1.349e-3*day*day + 3.463e-5*day*day*day  

 - 2.154e-7*day*day*day*day + 5.162e-10*day*day*day*day*day  

 - 4.328e-13*day*day*day*day*day*day; 
   

 The heat pump heat curve is implemented with the following equations: 

  TSup_nonsat = TSup_min + (TSup_nominal - TSup_min)/(Tamb_nominal - Tamb_min)*(Tamb 

                - Tamb_min); 
  TSup = max(TSup_min, min(TSup_max, TSup_nonsat)); 
 

The desired saturated forward supply temperature is TSup and parameter values are set to 

TSup_nominal = 323.15 K, Tamb_nominal = 258.15 K, TSub_min = 298.15 K, TSub_max = 323.15 

K, and Tamb_min = 293.15 K in the prebuilt simulation models (can be changed, e.g., using the 

parameter hP.TSup_nominal) . 

 The pump models are based on a quadratic map for the Grundfos UPM2 25-60 180 pump: 
 

  H_pump = -0.183*abs(port_a.m_flow*3.6)*(port_a.m_flow*3.6) –  

     0.1804*(port_a.m_flow*3.6)*speed + 7.0579*speed*speed; 
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  P_pump = -3.3768*abs(port_a.m_flow*3.6)*(port_a.m_flow*3.6)*speed +       

            44.6567*(port_a.m_flow*3.6)*speed*speed +  

            35.7518*speed*speed*speed + 0.0698*speed + 1.0575; 
 

H_pump is the pump head in meters (converted pressure by multiplying with 1e4) and P_pump 

is the pump power consumption. The speed should be in the interval 0.32-1 or 0. The flow 

through the pump is equal to port_a.m_flow.  
 

D.4.3 Baseline Control and Default Parameters 
 Hysteresis control is used on each of the floor heating valves to determine if they should be on 

or off in the next time interval (set to 10 min) based on the current temperature in each room. 

The hysteresis threshold, around the desired room temperature, is set to +/-0,5. This means that 

the valve needs to be in the same state for at least 10 min and the temperature needs to change 

at least 1 K to limit the number of switches. The thresholds can be changed through the 

parameters valve1_ctrl.offset_upper and valve1_ctrl.offset_lower and the sampling time is set 

using the parameter valve1_ctrl.t_s (likewise for the remaining three valves).  

 The heat pump is set to control the forward temperature and is implemented using a discrete PI 

controller with anti-windup. The sampling time is set to 1 min (parameter PI_comp.t_s) and the 

gain and integral time constant are set to 50 and 120, respectively (parameters PI_comp.K and 

PI_comp.Ti). The heat pump is automatically switched off if the forward temperature exceeds 

the upper threshold set to 323.15 K (parameter PI_comp.PVmax). The heat pump is also set to 

switch off if the requested heat pump power drops below the lower limit PI_comp.ymin in order 

to be able to emulate on/off control of the heat pump. The heat pump is only allowed to switch 

on again after a waiting period of 10 min, again to limit the number of switches (parameter 

PI_comp.backoff_wait).  

D.4.4 Python Interface for more Advanced Control 
An FMU of the Dymola models can be generated and simulated in, e.g., Python (PyFMI package needs to 

be installed). A simple example of FMU simulation is provided in the following. Note that good results in 

terms of simulation speed and robustness have been obtained by choosing the solver Radau IIa and 

exporting the FMU using co-simulation with Dymola solvers. 

1. import numpy as np   
2. import os as O   
3. from pyfmi import load_fmu   
4.    
5. def run_sim():   
6.    
7.     # Load the dynamic library and XML data   
8.     curr_dir = O.path.dirname(O.path.abspath(__file__));   
9.     fmu_name = O.path.join(curr_dir,'OpSys_0Experiments_Simulation_0models_BR1970_0hous

e_0with_0hp_0more_0valves.fmu')   
10.     model=load_fmu(fmu_name,kind='CS',log_level=0)   
11.    
12.     # Setup FMU simulation   
13.     Ts = 60*10 # sample time   
14.     Tstop = 24*60*60*2 # simulation stop time   
15.     opts = model.simulate_options()   
16.     opts["ncp"] = 1 # number of simulation steps to save in the simulation result   
17.     opts["filter"] = ['testhouse.T_room1',   
18.     'testhouse.T_room2',   
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19.     'testhouse.T_room3',   
20.     'testhouse.T_room4',   
21.     "hP.Power"] # filter is optional, but can be used to limit size of the result   
22.     opts["initialize"] = False # false is a requirement for continued simulation   
23.     model.set("start_time_sim", -24*60*60*30) # how to change a parameter   
24.     model.set("T_brine_time_offset.k",-24*60*60*30) # start sim 30. january   
25.     model.setup_experiment(start_time=0)   
26.     model.initialize()       
27.       
28.     # Go through all iterations   
29.     t = 0.0   
30.     for k in range(1,Tstop/Ts):   
31.        
32.         # Implement a more fancy advanced controller than this   
33.         T_amb_offset = 0   
34.         d_1 = 1   
35.         d_2 = 1   
36.         d_3 = 1   
37.         d_4 = 1   
38.    
39.         # Propagate simulation model with chosen input   
40.         u_t = np.linspace(t,t+Ts,2)          
41.         u_traj = np.transpose(np.vstack((u_t,   
42.         [T_amb_offset,T_amb_offset],   
43.         [d_1,d_1],   
44.         [d_2,d_2],   
45.         [d_3,d_3],   
46.         [d_4,d_4])))   
47.         input_object = (['T_amb_offset','d_1','d_2','d_3','d_4'],u_traj)      
48.         res = model.simulate(start_time=t,final_time=t+Ts, input=input_object, options=

opts)   
49.        
50.         # Extract sim result   
51.         T_a1 = res['testhouse.T_room1'][-1] # [-1] to get last sample   
52.         T_a2 = res['testhouse.T_room2'][-1]   
53.         T_a3 = res['testhouse.T_room3'][-1]   
54.         T_a4 = res['testhouse.T_room4'][-1]   
55.         Power = res['hP.Power'][-1]   
56.      
57.         t = t+Ts   

Note that simulation model saved as an FMU in this case needs to be located in the same folder as the 

Python code (remember to also have the data file, e.g., all_data_1970_noisy.txt, located here). A more 

extensive list of potential variables in the simulation result is listed here; 

Variable name in FMU Description Unit 

TC3.T Forward temp. before bypass valve K 

T_f2.T  Forward temp. after bypass valve K 

HeatCurve1.TSup Reference forward temp. from heat curve calc. K 

add9.y Ref. temp. Room 1 K 

add10.y Ref. temp. Room 2 K 

add11.y Ref. temp. Room 3 K 

add12.y Ref. temp. Room 4 K 

testhouse.T_ambient Ambient temp. K 

add8.u2 Ambient temp. offset (used in heat curve calc.) K 

testhouse.Q_sun_1 Solar radiation into Room 1 W 
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testhouse.Q_sun_2 Solar radiation into Room 2 W 

testhouse.Q_sun_3 Solar radiation into Room 3 W 

testhouse.Q_sun_4 Solar radiation into Room 4 W 
testhouse.Q_int_1 Gain from people and appl. Room 1 W 
testhouse.Q_int_2 Gain from people and appl. Room 2 W 
testhouse.Q_int_3 Gain from people and appl. Room 3 W 
testhouse.Q_int_4 Gain from people and appl. Room 4 W 

testhouse.T_room1 Temp. Room 1 K 

testhouse.T_room2 Temp. Room 2 K 

testhouse.T_room3 Temp. Room 3 K 

testhouse.T_room4 Temp. Room 4 K 

testhouse.T_room1_r Return temp. floor heating Room 1 K 

testhouse.T_room2_r Return temp. floor heating Room 2 K 

testhouse.T_room3_r Return temp. floor heating Room 3 K 

testhouse.T_room4_r Return temp. floor heating Room 4 K 

T_rt.T Total return temp. floor heating K 

valve1_ctrl.y_state Control signal valve Room 1 (range 0-1) - 

valve2_ctrl.y_state Control signal valve Room 2 (range 0-1) - 

valve3_ctrl.y_state Control signal valve Room 3 (range 0-1) - 

valve4_ctrl.y_state Control signal valve Room 4 (range 0-1) - 

MZ11.opening_filtered  Position of valves Room 1 (range 0-1) - 

MZ21.opening_filtered  Position of valves Room 2 (range 0-1) - 

MZ3.opening_filtered  Position of valve Room 3 (range 0-1) - 

MZ4.opening_filtered  Position of valve Room 4 (range 0-1) - 

MZ11.m_flow Mass flow through valve 1 Room 1 kg/s 

MZ12.m_flow Mass flow through valve 2 Room 1 kg/s 

MZ13.m_flow Mass flow through valve 3 Room 1 kg/s 

MZ14.m_flow Mass flow through valve 4 Room 1 kg/s 

MZ21.m_flow Mass flow through valve 1 Room 2 kg/s 

MZ22.m_flow Mass flow through valve 2 Room 2 kg/s 

MZ23.m_flow Mass flow through valve 3 Room 2 kg/s 

MZ3.m_flow Mass flow through valve Room 3 kg/s 

MZ4.m_flow Mass flow through valve Room 4 kg/s 

bypass_valve.m_flow Mass flow through bypass valve kg/s 

testhouse.V_door_12 Ventilation through door between Room 1 and 2 m3/s 

testhouse.V_door_23 Ventilation through door between Room 2 and 3 m3/s 

testhouse.V_door_41 Ventilation through door between Room 4 and 1 m3/s 

add13.y Global solar radiation W 

hP.Power Heat pump power consumption W 

hP.Q_hp Delivered heat from heat pump to floor heating system W 

time Simulation time s 
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The Python package neurolab can be used to implement a neural network in Python for prediction 

purposes. Here is some example code to initialize the network from parameters derived in Matlab: 

1. import neurolab as nl   
2. import numpy as np   
3. import scipy.io as sio   
4.    
5. # Load neural network parameters (one hidden layer)   
6. mat_contents = sio.loadmat('NN_pars.mat') # a matlab file with parameters   
7. input_w = np.array(mat_contents['input_w'])   
8. input_b = np.array(mat_contents['input_b'])   
9. output_w = np.array(mat_contents['output_w'])   
10. output_b = np.array(mat_contents['output_b'])   
11. range_u = mat_contents['range_u']   
12. range_y = mat_contents['range_y']   
13. N_inputs = len(input_w[0])   
14. N_neurons = len(input_b)   
15. N_outputs = len(output_b)   
16. input_b = np.reshape(input_b,N_neurons)   
17. output_b = np.reshape(output_b,N_outputs)   
18.    
19. # Create network with random initialization and insert pretrained network parameters   
20. net = nl.net.newff([[-

1,1]]*N_inputs,[N_neurons,N_outputs],[nl.trans.TanSig(),nl.trans.PureLin()])   
21. net.layers[0].np['w'][:] = input_w   
22. net.layers[1].np['w'][:] = output_w   
23. net.layers[0].np['b'][:] = input_b   
24. net.layers[1].np['b'][:] = output_b    

The network can then be used by calling the function net.sim([input_vec]), where input_vec is an array 

containing all the inputs to the neural network at a given discrete time instance and the output is, e.g., 

the four predicted room temperatures on step ahead in time. 

D.5 Simulation Example 
A few simulation result plots from Dyomla is shown in Figure D.8 – D.10. The chosen simulation model is 

BR1970_house_with_hp_more_valves and the first two days of January is plottet. 

 
Figure D.8: Room temperatures in Kelvin and desired room temperature with night setback from 22.00-05.00 (black line). The 

temperatures are controlled with hysteresis type control (on/off), which gives the “sawtooth” behavior. Room 3 has concrete 

flooring and is dynamically slower in terms of tracking the reference setpoint. The temperature in Room 1 is disturbed by solar 

heat during day two, due to large window sections, and has dinner cooking peaks from increased internal heat gain from 

appliances (kitchen part of Room 1). 
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Figure D.9: Valve on/off control signal, ambient temperature, solar heat gains into each room, and internal heat gains from 

people and appliances. 

 
Figure D.10: Heat pump power consumption. The heat pump is heavily saturated when the house needs to be warmed up after 

night-setback. Saturation also occurs due to synchronization of the heat demand from each room. On/off operation of the heat 

pump typically occurs if only one of the rooms has a heat demand. 


